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Abstract— Variational inference aims to approximate
posterior probability distributions. Several approaches have
been developed over the years; originally restrained to
problems for which variational inference led to closed form
approximations, the method was then generalized with the
less accurate but simpler use of pre-specificed families of
posterior approximations. In the latter case, the inference
performance is limited by the complexity of the specified
family. The use of normalizing flows, which constructs versatile
and arbitrarily complex approximate posterior distributions
by transforming a simple initial distribution through the
application of successive invertible mappings, constitutes
an efficient, scalable and flexible variational inference
technique, as will be demonstrated in this study. All code used
throughout this project is gathered in the following repository:
https://github.com/pierresegonne/VINF.

I. INTRODUCTION

Probability theory is key to quantify uncertainty in any
phenomenon and is therefore essential to the development
of thinking machines. Indeed, any machine, or model, which
needs to generate representations from given observations
in order to accomplish its mission requires the formation
and the numerical evaluation of beliefs; probability theory
provides well defined rules to induce and manipulate such
beliefs.

Furthermore, probabilistic modelling embeds directly
probability theory into machine learning models.
Probabilistic models describe how the interactions between
observed variables, latent (in the sense of unobserved)
variables and weights can predict target variables, while
considering all variables as random variables with their
associated probabilities.

To demonstrate interesting properties of probabilistic
models, let’s consider a probabilistic linear regression.

In probabilistic graphical models, as exposed in Figure
1, edges provide information about the conditional
independence of the random variables they link. Specifically,
any two nodes are conditionally independent given the value
of their parents in the graph. This yields, for the previous
model that:

p(y, x, ω) = p(y|x, ω)p(ω) (1)

The probability p(y|x, ω) is called the likelihood of the
target data and p(ω) the prior probability of the parameter
ω. The application of Bayes’ Theorem immediately yields
an expression for p(ω|y, x), the posterior probability:
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Fig. 1: Probabilistic graphical model for a probabilistic linear
regression

p(ω|y, x) =
p(y|ω, x)p(ω|x)

p(y|x)
=
p(y|ω, x)p(ω)

p(y|x)
(2)

And thus provides a direct way to train the model. It
can first be noted that the denominator of Equation 2,
p(y|x) called the evidence acts as a normalizing constant,
independent of ω, and therefore can be ignored to find the
optimal value of ω, ω∗

ω∗ = max
ω

p(ω|y, x) = max
ω

p(y|ω, x)p(ω) (3)

It thus appears that in this model, the knowledge of
the posterior distribution is crucial to determining optimal
parameters for the model. In this simple example, it is
possible to imagine reasonable probability distributions to
express the likelihood and the prior, thus enabling the
derivation of optimal weights ω∗ (See Appendix A, VIII).
The estimate ω∗ would here be called the maximum a
posteriori (MAP) estimate.

Beyond this example, which demonstrates that the
knowledge of the posterior distribution is indeed paramount
when working with Bayesian models, there are many cases
for which having an expression of the entire posterior
probability distribution is desired. For example, in the
case of the linear regression, having knowledge of the
full posterior distribution facilitates the estimation of the
marginal likelihood of a new observation. For a trained
model, a new observation x̂ and a potential prediction ŷ,
the marginal likelihood is
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p(ŷ|x̂, x, y) =

∫
p(ŷ, ω|x̂, x, y)dω

=

∫
p(ŷ|x̂, ω)p(ω|x, y)dω

(4)

And thus, having both an analytical expression for the
likelihood p(ŷ|x̂, ω) and the posterior p(ω|x, y) would allow
to compute the marginal likelihood of new datapoints and
consequently to predict the most likely ŷ, in the case where
it is not observable.

Additionally, the knowledge of the entire posterior
distribution allows for more robust and varied applications.
In this case, and notably because the evidence p(y|x) is
generally not known in closed form and takes exponential
time to compute, it is required to result to an approximation
of the posterior distribution. Using observed data to
approximate the posterior distribution is a form of inference.

A first approach to approximating the posterior distribution
relies on stochastic processes that, given an infinite amount
of computing resources, would produce an exact result.
The approximation then arises from the finitude of the
resources available to execute such method. Markov chain
Monte Carlo (MCMC) is one of the most common technique
employed with that regard. It relies on the use of an ergodic
Markov Chain whose stationary distribution is the posterior
distribution, and from which samples are drawn to construct
an empirical estimate of the end distribution. Even though
advances such as the Metropolis-Hastings algorithm ([1], [2])
or the Gibbs sampler ([3]) greatly increased the practical
usability of the method, it is still too slow for many real
world applications. See [4] for more details.

The second approach, that will be used throughout this
study, is called Variational Inference (VI). It relies on the use
of optimisation techniques to determine the most adequate
distribution q∗ from a family of probability distributions Q,
in the sense that it provides the best approximation of the
true probability distribution p. The Kullback-Leibler (KL)
divergence1 provides an effective measure of the closeness
of two probability densities [5] and can hence be used to
determine q∗. Considering a set of observed variables x =
x1:N and the latent variables z = z1:M

2

q∗(z) = arg min
q∈Q

KL(q(z)||p(z|x)) (5)

The previous definition reveals an important property of
Variational Inference, the quality of the approximation of the
true posterior is constrained by the family of distributions
considered Q.

1The KL divergence is defined, for two continuous densities p and q as
KL(p||q) =

∫∞
−∞ log(

p(z)
q(z)

)p(z)dz, for demonstration of its positiveness,
see Appendix B (VIII)

2In the previous example, ω would constitute a latent variable, as it is
not a deterministic parameter.

Fig. 2: Demonstration of the restriction imposed by the distribution
family Q on the approximation of the posterior p(z|x)

For example, in Figure 2 is shown in red an arbitrary
posterior distribution. If the family Q is restricted to
Gaussian distributions, the obtained approximation will be
similar to the q distribution displayed in blue. The family of
Gaussian distributions being unimodal, restricting the family
of possible distributions to it cannot result in a very close
approximation.

Furthermore, it is generally not possible to directly use
the KL divergence to determine the optimal approximate
distribution q∗, indeed

KL(q(z)||p(z|x)) = E
q
[log(q(z))]− E

q
[log(p(z|x))]

= E
q
[log(q(z))]− E

q
[log(p(z,x))]

+ log(p(x))

(6)

Which explicitly shows the dependence of the KL
divergence on the evidence p(x), that is generally unknown.
The evidence is nevertheless a constant with respect to the
latent variables z. By denoting the evidence lower bound
(ELBO) function as

ELBO(q) = −E
q
[log(q(z))] + E

q
[log(p(z,x))] (7)

Then Equation 6 can be re-written as

log(p(x)) = KL(q(z)||p(z|x)) + ELBO(q)

≥ ELBO(q)
(8)

Where the bottom inequality is induced by the positiveness
of the KL divergence (See Appendix B, VIII for a
demonstration, it can also be shown using Jensen’s inequality
as in [6]), thus explaining the name of the ELBO function.
Even though it has not been validated in theory, using the
ELBO as an approximation of the evidence, or marginal
likelihood works in practice for approximate inference [7],
and as suggested by Equation 8, maximising the ELBO is
equivalent in the end to minimising the KL divergence, which
is the ultimate goal of inference.



It is worth noting that in the case where Q contains the
true posterior distribution, p(z|x), then the KL divergence
will be minimised by adopting it as the optimal approximate
posterior distribution q∗(z) = p(z|x). In that case, and
if the model contains deterministic model parameters, it is
possible to use the ELBO to gradually converge towards the
true posterior distribution, as is accomplished with the EM
algorithm [8]. In this study, parameters will nevertheless be
included in the latent space as random variables, and the
ELBO used for optimisation.

Overall, variational inference is now often used as the
preferred method to train probabilistic models for complex
problems or large dataset, notably due to its flexibility
and its computational efficiency3. Common applications are
amongst others, semi-supervised classification [9], generative
models for images [10] and speech synthesis [11].

This study aims at demonstrating key concepts of
variational inference, and detailing practical considerations
about the implementation of normalizing flows, with the hope
that such technique can drastically improve the performance
and usability of variational inference methods. To do so, it
will first present how to practically use variational inference
on a demonstration example, with a technique called mean
field approximation. The limitations of this technique will
then be exposed and the concept of normalizing flows
will be detailed as an attempt to alleviate them. Finally
results of experiments aiming at evaluating the practical
usability of normalizing flows will be presented and will
support an eventual discussion on variational inference using
normalizing flows.

II. MEAN FIELD APPROXIMATION

As seen in Introduction, the choice of the family
of distributions considered Q to approximate the true
posterior distribution is crucial to the execution of variational
inference. For the mean field approximation, the family is
chosen such that its elements respect

q(z) =

m∏
i=1

qi(zi) (9)

Where the respective {zi}i represent a partition of the
latent variables z into disjoint groups.

A. General Considerations

Noting qi(zi) as qi to simplify notations, the ELBO
function becomes, for continuous random variables

ELBO(q) =

∫ ∏
i

qi[log(p(z,x))−
∑
i

log(qi)]dz (10)

Focusing on a single factor qj , the following holds

3at least in comparison to MCMC

ELBO(q) =

∫
qj [

∫
log(p(x, z))

∏
i6=j

qidzi]dzj

−
∫
qj log(qj)dzj + const

=

∫
qj log(p̂(x, zj))dzj −

∫
qj log(qj)dzj

+ const
= −KL(qj(zj)||p̂(x, zj)) + const

(11)
Where p̂(x, zj) is defined by

log(p̂(x, zj)) = E
i6=j

[log(p(x, z))] + const

=

∫
log(p(x, z))

∏
i 6=j

qidzi + const
(12)

Equation 11 shows that it is possible to maximise the lower
bound by minimising the KL divergence between qj(zj) and
p̂(x, zj), i.e by taking qj(zj) = p̂(x, zj), finally resulting in

log(q∗j (zj)) = E
i 6=j

[log(p(x, z))] + const (13)

The constant here appearing as the normalising constant
of the distribution qj . The expression found in Equation 13 is
very interesting, even though it does not provide an explicit
form for the approximate distribution q, as the expression for
the factor qj depends on the expression of the other factors
{qi}i6=j , it does provide an iterative method to converge
towards a good approximation of the true best possible
approximation. Cycling through the factors and updating
consequently the estimates does indeed prove to converge,
as the lower bound is convex in each of the factors {qi}
[12].

One of the drawbacks of the mean field approximation
is its tendency to produce posterior distributions that are
too compact, as displayed on Figure 3. In this case, that
results from using q(z) = q(z1)q(z2) to approximate a 2D
Gaussian posterior, the mean is correctly captured, but the

Fig. 3: Comparison between an arbitrary two dimensional Gaussian
with full covariance as posterior distribution (red) and the
approximated distribution obtained with the mean field method (red)



covariance of both factors is controlled by the direction of
smallest variance for the true posterior. This is due to the
zero-avoidance behaviour of the KL divergence; it leads to
distributions q that avoid regions where p is near zero.

B. Gaussian Mixture Model

Fig. 4: Example of a 2D mixture of Gaussians

In the Gaussian mixture model, the observed dataset
D = {x1, ...,xN} consists of random variables generated
from a mixture of K gaussians of dimension d. Figure 4
provides a good example for a 2D Gaussian mixture with
two components. The contour plots represent the probability
densities of the respective components and the grey points are
sampled from the resulting mixture. To each observed data
xi point is associated a latent variable zi that is a 1-of-K
binary vector indicating contributions from each Gaussian
involved in the mixture, with the mixing coefficients π.

The conditional distribution of z given the mixing
coefficients is

p(z|π) =

N∏
n=1

K∏
k=1

πznk

k (14)

Each of the components influence the likelihood of any
data vector, and their conditional distribution, given the latent
variables and underlying component parameters -µk for the
mean of the kth Gaussian component and Λk for its precision
matrix- can be expressed as

p(x|z,µ,Λ) =

N∏
n=1

K∏
k=1

N (xn|µk,Λ−1k )znk (15)

To simplify the following analysis, conjugate priors will
be adopted for the parameters. A Dirichlet distribution will
be assumed over the mixing coefficients

p(π) = Dir(π|α0) = C(α0)

K∏
k=1

πα0−1
k (16)

Where C(α0) is the normalising constant4 for the
distribution and the parameters α0 = {α0, . . . , α0} are
initially chosen all equal by symmetry.

4It is defined, for α = {α1, . . . , αK} by C(α) =
Γ(

∑K
k=1 αk)∏K

k=1
Γ(αk)

The mean and precision parameters for each components
will follow a Gaussian-Wishart distribution, as it represents
the conjugate prior when both mean and precision are
unknown [13],

p(µ,Λ) = p(µ|Λ)p(Λ)

=

K∏
k=1

N (µk|m0, (β0Λk)−1)W(Λk|W0, ν0)
(17)

Here again, the parameters of the distribution m0, β0,
W0 and ν0 are initially chosen equal by symmetry. The
interactions between the observed data, latent variables and
parameters is exhibited in Figure 5, which represents the
graphical model for the mixture of gaussians. In the model,
π denotes {πk}, µ denotes {µk} and Λ, {Λk}

Fig. 5: Probabilistic graphical model for the Gaussian mixture

The graphical model directly allows to split the joint
probability into

p(x, z,π,µ,Λ) = p(x|z,µ,Λ)p(z|π)p(π)p(µ|Λ)p(Λ)
(18)

Let’s now introduce the mean field approximation. By
splitting up the latent variables from the parameters, the goal
of the inference will become finding an optimal distribution
q∗ over z, π, µ, Λ satisfying

q(z,π,µ,Λ) = q(z)q(π,µ,Λ) (19)

It was seen previously, through the general case study that
the different subsets of factors can be iteratively updated.
First, for the latent variables z, applying Equation 13 results
in

log(q∗(z)) = E
π,µ,Λ

[log(p(x, z,π,µ,Λ))] + const (20)

Which then, considering that in the decomposition of the
joint probability distribution only p(x|z,µ,Λ) and p(z|π)
depend on z, becomes

log(q∗(z)) = E
π

[log(p(z|π))] + E
µ,Λ

[log(p(x|z,µ,Λ))]

+ const
(21)



And then because

E
π

[log(p(z|π))] =

∫
log(p(z|π))q(π)dπ

=

N∑
n=1

K∑
k=1

znk

∫
log(πk))q(π)dπ

=

N∑
n=1

K∑
k=1

znkE[log(πk)]

E
µ,Λ

[log(p(x|z,µ,Λ))] =
1

2
E[log(|Λk|)]−

D

2
log(2π)

− 1

2
E

µk,Λk

[(xn − µk)TΛk(xn − µk)]

(22)
The log-probability of the approximate factor relative to

the latent variables finally becomes

log(q∗(z)) =

N∑
n=1

K∑
k=1

znk log(ρnk) + const (23)

Where ρnk was introduced to simplify the notation. It is
defined as

log(ρnk) = E[log(πk)] +
1

2
E[log(|Λk|)]−

D

2
log(2π)

− 1

2
E

µk,Λk

[(xn − µk)TΛk(xn − µk)]

(24)
It is possible to derive an analytical expression for each

component of this expression. The following considerations
will apply for the general case, in the case where parameters
of the prior distributions α, mk, βk, Wk and νk might not
be all equal anymore.

If X = {X1, . . . ,XK} follows a Dirichlet distribution,
p(X) = Dir(X|α), then it holds that

E[log(Xi)] = ψ(αi)− ψ(
∑
j

αj) (25)

Where ψ is the digamma function [14], therefore,

E[log(πk)] = ψ(αk)− ψ(
∑
j

αj) (26)

Furthermore, if M ∼ W(V , n), then it holds that

E[log(|M |)] = ψp(
n

2
) + p log(2) + log(|V |) (27)

Where p is the dimension of the matrix M , and where ψp
is the multivariate digamma function [13], which is defined
as [15]

ψp(a) =
∂ log(Γp(a))

∂a
=

p∑
i=1

ψ(a+
1− i

2
) (28)

This eventually results in

E[log(|Λk|)] = D log(2) + log(|Wk|) +

D∑
i=1

ψ(
νk + 1− i

2
)

(29)
And finally, to determine an analytical expression for

Eµk,Λk
[(xn − µk)TΛk(xn − µk)], it is first important to

remind that in the general case, for x ∈ IRn and Σ ∈ IRn×n,

xTΣx = tr(xTΣx) = tr(ΣxxT ) (30)

And thus

E
µk,Λk

[(xn − µk)TΛk(xn − µk)] =∫ ∫
(xn − µk)TΛk(xn − µk)q(µk,Λk)dµkdΛk =∫ ∫

tr(Λk(xn − µk)(xn − µk)T )q(µk|Λk)q(Λk)dµkdΛk

(31)
By definition, µk|Λk ∼ N (mk, (βkΛk)−1). Thus,

Eµk|Λk
[µk] = mk, and it also holds [16] (page 35) that

Eµk|Λk
[µkµ

T
k ] = mkm

T
k + (βkΛk)−1, which can be

combined to obtain

E
µk|Λk

[(xn − µk)(xn − µk)T ] =

E
µk|Λk

[xnx
T
n − µkxTn − xnµTk + µkµ

T
k ] =

(xn −mk)(xn −mk)T + (βkΛk)−1

(32)

Which can finally be re-arranged, thanks to elementary
properties of the trace and of the expected values, and
because EΛk

[Λk] = νkWk, into

E
µk,Λk

[(xn − µk)TΛk(xn − µk)] =∫
tr(Λk(xn −mk)(xn −mk)T + (βkΛk)−1)q(Λk)dΛk =

D

βk
+

∫
(xn −mk)TΛk(xn −mk)q(Λk)dΛk =

D

βk
+ νk(xn −mk)TWk(xn −mk)

(33)
These considerations, despite their length and complexity

confirm a very interesting property of the mean field
approximation that, as was displayed in Equation 13; each
factor, here the latent variables z, can be updated iteratively
based on the value of the other factors. Equation 23, put to
the exponential becomes

q∗(z) ∝
N∏
n=1

K∏
k=1

ρznk

nk

=

N∏
n=1

K∏
k=1

rznk

nk

(34)

Where the respective rnk are the normalized counterparts
to the ρnk,



rnk =
ρnk∑K
j=1 ρnj

log(ρnk) = ψ(αk)− ψ(

K∑
j=1

αj)−
D

2
log(2π)

+
1

2
(D log(2) + log(|Wk|) +

D∑
i=1

ψ(
νk + 1− i

2
))

− 1

2
(
D

βk
+ νk(xn −mk)TWk(xn −mk))

(35)
The optimal solution q∗(z) takes on the same form as the

prior -which was chosen for that reason-, and it follows that

E[znk] = rnk (36)

Suggesting consequently that the coefficients rnk can be
attributed the role of responsabilities, and therefore can be
used, similarly as in the E step of the EM algorithm [17], to
update the statistics of the observed dataset

Nk =

N∑
n=1

rnk

xk =
1

Nk

N∑
n=1

rnkxn

Sk =
1

Nk

N∑
n=1

rnk(xn − xk)(xn − xk)T

(37)

Similarly as what has just been accomplished, it is possible
to derive an update rule for the parameters π, µ and Λ.
Applying Equation 13 again results in

log(q∗(π,µ,Λ)) = E
z

[log(p(x, z,π,µ,Λ))] + const (38)

Again, the decomposition of the joint probability
distribution can be applied. The expectations of p(π) and
p(µ,Λ) with regard to z are immediate to obtain, and
because

E
z

[log(p(x|z,µ,Λ))] =

N∑
n=1

K∑
k=1

log(N (xn|µk,Λk))E[znk]

=

N∑
n=1

K∑
k=1

log(N (xn|µk,Λ−1k ))rnk

(39)
The optimal factor can be re-expressed as

log(q∗(π,µ,Λ)) = log(p(π)) +

K∑
k=1

log(p(µk,Λk))

+ Ez[log(p(z|π))]

+

N∑
n=1

K∑
k=1

log(N (xn|µk,Λ−1k ))rnk

+ const

(40)

The terms depending on π and {µ,Λ} are well
split, suggesting that the parameter factor can further
be decomposed into q(π,µ,Λ) = q(π)q(µ,Λ) =
q(π)

∏K
k=1 q(µk,Λk)

Isolating the terms related to π in Equation 40, results in

log(q∗(π)) = (α0 − 1)

K∑
k=1

log(πk) +

N∑
n=1

K∑
k=1

rnk log(πk)

+ const
(41)

Which directly indicates that q∗(π) is a Dirichlet
distribution over π with parameters

αk = α0 +Nk (42)

This provides the first update rule for the parameter, which
parallels the M step of the EM algorithm.

Furthermore, using the marginalisation of Λk,
q(µk,Λk) = q(µk|Λk)q(Λk) and considering only
the terms involving µk and Λk in Equation 40 results in

q∗(µk,Λk) = N (µk|mk, (βkΛk)−1)W(Λk|Wk, νk) (43)

Where the parameters are updated with the following
expressions (see Appendix C VIII for details)

βk = β0 +Nk

mk =
1

βk
(β0m0 +Nkxk)

W−1
k = W−1

0 +NkSk +
β0Nk
β0 +Nk

(xk −m0)(xk −m0)T

νk = ν0 +Nk
(44)

Equations 37, 42 and 44 thus provide, as expected,
an iterative method to converge towards the optimal
distribution q∗(z,π,µ,Λ) = q∗(z)q∗(π)q∗(µ,Λ) '
p̂(x, z)p̂(x,π)p̂(x,µ,Λ) which can be implemented as is,
and provide a direct way to attribute each point to the
Gaussian component with the strongest influence, i,e the
greatest responsibility cn = arg maxk∈[1,K] rnk. Figure
6 displays an example of clustering realised using this
technique, yellow points are attributed to the top Gaussian
component, and purple points are attributed to the bottom
Gaussian component.

Furthermore, knowing the probability density function
of the trained Gaussian mixture can be very useful. It
notably allows the evaluation of the likelihood of new points
p(x̂,x). Similarly to what was exposed in Equation 4, the
marginalisation with regard to the new latent variables ẑ and
parameters π, µ and Λ results in



Fig. 6: Variational Gaussian mixture approximation. The original
data samples x are each attributed a Gaussian component, yellow
for the top component and purple for the bottom component. The
contour plot corresponds to the probability density function of the
variational approximation.

p(x̂|x) =
∑
ẑ

∫ ∫ ∫
p(x̂, ẑ,π,µ,Λ|x)dπdµdΛ

=
∑
ẑ

∫ ∫ ∫
p(x̂|ẑ,π,µ,Λ)p(ẑ|π)

p(π,µ,Λ|x)dπdµdΛ

(45)

The likelihood p(x̂|ẑ,π,µ,Λ) is known, and so is the
conditional distribution for the latent variables p(ẑ|π),
but the posterior distribution for the parameters is
intractable, forcing the usage of the factorised approximation
q(π)q(µ,Λ)

p(x̂|x) =

K∑
k=1

∫ ∫ ∫
πkN (x̂|µk,Λ−1k )

q(π)q(µk,Λk)dπdµkdΛk

(46)

Which finally results in (for details see Appendix D VIII)

p(x̂|x) =

∑K
k=1 αkSt(x̂|mk,Lk, νk + 1−D)∑K

k=1 αk
(47)

Where St represents the student distribution and

Lk =
(νk + 1−D)βk

(1 + βk)
Wk (48)

In Figure 6 is also represented the contour plot associated
with such probability density function. It corresponds well to
what could be expected, as for a large number of data points
N, the density function exposed in Equation 47 reduces to a
mixture of Gaussians [13]; The two Gaussians components
are clearly visible and are linked for continuity reasons.

The previous demonstration shows the ability to generate,
from the simple assumption that the mean field technique

is based on, expressive, reliable and accurate variational
approximations of the true posterior distribution. It also
shows very clearly that only relying on the factorisation of
the approximate distribution, using acquired knowledge to
determine the appropriate conjugate priors and relying on
advanced mathematical skills to derive the correct update
expressions and probability density function is cumbersome
and not scalable to problems where the data does not
seem to originate from a combination of known probability
distributions. It is therefore not applicable in many real world
cases, for which few properties about the distribution of data
are known beforehand, such as in image or audio analysis
for example.

III. AUTOMATIC VARIATIONAL INFERENCE

It is nevertheless possible to develop another technique,
both conceptually simpler and more versatile, to obtain a
variational approximation of the true posterior distribution.
The evidence lower bound was defined in Equation 7 as

ELBO(q) = −E
q
[log(q(z))] + E

q
[log(p(z,x))] (49)

Finding the approximate distribution q that approximates
best the true posterior distribution by maximising the ELBO
function cannot be realistically achieved in the general case;
the expected values composing the ELBO being intractable
for many choices of approximate distributions. Restricting
the choice of the approximation q to distributions that
can be parametrised by a set of parameters φ is a first
step towards simplifying this complex optimisation problem.
Indeed, finding the most appropriate approximation becomes
an optimisation problem for the parameters of the distribution
q.

φ∗ = arg max
φ

ELBO(qφ)

= arg max
φ

E
qφ

[log(pθ(z,x))]− E
qφ

[log(qφ(z))]
(50)

Where qφ designates the distribution q parametrised with
φ and similarly, pθ(z,x), the joint probability parametrised
by the model parameters θ. In the general case, finding an
analytical expression for the optimal set of parameters φ∗

is impossible. Nevertheless, assuming the ELBO function is
differentiable with respect to φ, then optimisation methods,
such as gradient ascent [18] [19], can generate reasonable
optima. If it can be expected that an analytical expression
of Eqφ [log(qφ(z))] and therefore, of its gradient with regard
to φ can be determined, it is nevertheless not the case for
the other term of the ELBO function, Eqφ [log(pθ(z,x))].
Fortunately, expectations are integrals, and Monte Carlo
integration [4] can therefore be used to approximate them

E
qφ

[log(pθ(z,x))] ' 1

S

S∑
s=1

log(pθ(zs,x))

where zs ∼ qφ

(51)



Such estimate is unbiased and its standard deviation is of
order 1√

S
where S is the number of samples used [20].

It thus becomes possible to obtain an approximate
analytical expression for the gradient of the ELBO with
regard to the approximation parameters ∇φELBO(qφ).
Using modern automatic differentiation tools such
as tensorflow5,6 [22] or pytorch7 [23], it becomes
straightforward to perform the optimisation of the parameters
of the approximated posterior distribution. In practice, using
minibatches and stochastic gradient descent allows to scale
this approach to very large datasets [24]. This form of
approximation has been named doubly-stochastic estimation
[25], because both the gradient estimation and the gradient
descent use stochastic methods.

To simplify even further this method, one can choose
to use as a parametrised approximation, a parametrised
Gaussian, for which φ then becomes φ = {µ,Σ}.
If the covariance is chosen as diagonal, then the
reparametrisation trick can be used. For each dimension
involved, the following holds

z ∼ N (µ, σ2)⇔ z = µ+ σε , ε ∼ N (0, 1) (52)

And therefore, for a single dimension,

E
qφ

[log(pθ(z, x))]⇔ E
N (ε|0,1)

[log(pθ(µ+ σε, x))] (53)

Which can be extended to all dimensions, as a
diagonal covariance matrix implies that all dimensions
are independent and that the resulting distribution can
be factorised accordingly. This is a special case of the
mean field approximation. This provides an even easier
way to generate an optimum for the parameters of the
approximate posterior distribution and provides in practice
a more stable convergence [26]. This method has been
introduced at different occasions, under the names of
Stochastic Backpropagation [27] and Stochastic Gradient
Variational Bayes [10].

It is furthermore possible to use a neural network, called
here an inference network, to represent the parameters of the
approximation qφ, thus generating µ(x) and Σ(x) in the
case where qφ is a Gaussian. This enhances the efficiency
of the method, especially for problems with a great number
of dimensions (images for example). Because the problems
that will be considered here are mainly for demonstration
purposes and have therefore a low number of dimensions, the
addition of inference networks was ignored for the rest of the
study. Adding an inference network to the previous method

5https://www.tensorflow.org/
6tensorflow encloses a probabilistic module [21] that makes it naturally

well suited to work with models using probability distributions. This is why
tensorflow was used throughout this project.

7https://pytorch.org/

Fig. 7: Fitting of Automatic Variational Inference on the Gaussian
mixture posterior

constitutes an approach coined as Amortised Variational
Inference [26].

Figure 7 displays, in red, the contour plot of the learned
approximated distribution qφ compared to contours of
both components8. The family of parametrised distribution
considered here consists of Gaussian distributions of
dimension two, with a diagonal covariance matrix. The plot
reveals that the approximation captures one of the component
of the mixture but, as was already explained with Figure 3,
is too compact compared to the true Gaussian component.
It is normal that the approximation only captures one
component, as no multi modal distribution is included in the
considered parametric family of approximate distributions;
it is also normal that the learned approximation does not
cover both components due to the zero-avoidance behaviour
of the KL divergence that is implicitly minimised during the
training process. Overall, this demonstrates that even though
automatic variational inference is a very useful tool due to
its simplicity, the approximation that this approach produces
is limited in its accuracy by the complexity of the parametric
family chosen for the approximation, as was foreshadowed
with Figure 2.

IV. NORMALIZING FLOWS

To rectify this limitation, it is nevertheless possible to
transform initially simple distributions, such as the Gaussian,
into arbitrarily complex approximate posterior distributions.
With the theoretical assurance that variational inference does
not induce overfitting [13], it can be expected that this
transformation provides a serious increase in the performance
of approximations learned through automatic variational
inference.

Normalizing flows [28] [29] consists in a chain of
invertible mappings that can be applied to transform an initial
probability distribution into a vastly different probability
distribution, through the repeated application of the change of
variable. To demonstrate how such alteration is possible, let’s
consider an invertible smooth mapping f : IRd → IRd, with

8One could also use the probability density of the variational
approximation obtained earlier, the conclusions would be the same

https://www.tensorflow.org/
https://pytorch.org/


Fig. 8: Effect of an exponential flow on a standard Gaussian distribution

its inverse being noted f−1, applied onto a random variable
z with distribution q(z). The output z′ = f(z) will also be
a random variable. its distribution q′(z′) can be expressed
as a function of the original distribution

q′(z′) = q(z)|det
∂f−1

∂z′
| (54)

To see why, let’s study the simple 1D case. Under the
change of variables, the probability contained in a differential
area must be invariant. Thus

|q′(z′)dz′| = |q(z)dz| (55)

Or

q′(z′) = q(z)| dz
dz′
| = q(z)|df

−1

dz′
(z′)| (56)

Which can be extended to the multidimensional case
already expressed in Equation 54 [30]. Furthermore, the
inverse function theorem enounces that if the Jacobian of
the inverse mapping f−1 is the inverse of the Jacobian of
the mapping f , ∂f−1

∂z′ = (∂f∂z )−1, and therefore, because for
any invertible matrix A, det(A−1) = det(A)−1, the resulting
distribution can be re-expressed as

q′(z′) = q(z)|det
∂f

∂z
|−1 (57)

The exponential function is smooth and invertible. It can
therefore be used as a legitimate normalizing flow. In this
simple case, both the forward mapping f = exp and the
inverse mapping f−1 = log are known and it is thus quite
simple to display the effect of the flow on both the space
of the random variables and on the associated probability
distributions. The application of the exponential flow on a
standard Gaussian q(z) = N (z|0, 1) results in Figure 8. The
red curve represents the original distribution, that is defined
on the space spanned by the red crosses, which are samples

for the random variable z, evenly spaced between -3 and 3.
In blue is represented the resulting distribution after the flow

q′(z′) = q(f−1(z′))|df
−1

dz′
(z′)| = N (log(z′)|0, 1)| 1

z′
| (58)

Which is logically a log-normal distribution. In blue are
the respective images z′ of the samples of the random
variable z. This figure gives an intuitive understanding of
the effect of a normalizing flow on a random variable and
its associated probability distribution. By warping the space
on which lie the considered random variables, the resulting
probability distribution is affected. In the previous case, the
warping would consist of taking the negative half-line of IR
and compacting it on the right side of zero, while dilating
the positive half-line of IR. As a result, the density of the
resulting random variables would greatly increase on the
right side of zero, where space as been compacted, and
gradually decrease when moving away from 0. This warping
of space can then become arbitrarily more complex as the
flow considered also gains in depth, or complexity. Figure
9 represents such warping in two dimensions, for more
complex flows that will be detailed further in this study.

To generate more complex flows it is possible to chain

Fig. 9: Effect of a Normalizing Flow on a 2 dimensional meshgrid.
The warping of space induced by the flow is very clear when
looking at the image zk (blue) of the original space points z0 (grey)



several invertible smooth mappings f1, . . . , fK such that

zK = fK ◦ . . . ◦ f1(z0)

log(qK(zK)) = log(q0(z0))−
K∑
k=1

log(|det
∂fk
∂zk−1

|)
(59)

While defining smooth invertible mappings is pretty
straightforward, computing the Jacobian determinant
generally requires O(LD3) operations [26] [31], where
D is the dimension of the Jacobian and L the number of
chained mappings, and is therefore not scalable.

It is nevertheless entirely possible to find mappings such
that the Jacobian determinant terms can be computed in
linear time O(LD).

A. Planar Flows

The first type of mapping considered is

f(z) = z + uh(wTz + b) (60)

For which u ∈ IRD, w ∈ IRD and b ∈ IR are parameters
and h a smooth element wise non-linearity [26]. This family
of transformation respect the linear-time requirement for the
computation of the Jacobian determinant. Indeed, by linearity
of the derivative and because daTx

dx = a ([16] page 10), the
following holds

|det
∂f

∂z
| = |det(

∂z

∂z
+
∂h(wTz + b)

∂z
uT )|

= |det(I + h′(wTz + b)
∂(wTz + b)

∂z
uT )|

= |det(I + h′(wTz + b)wuT )|

(61)

Considering the matrix determinant lemma, that states that
for A an invertible matrix and x and y vectors, det(A +
xyT ) = (1 + yTA−1x)det(A), and with the notation
ψ(z) = h′(wTz + b)w, it results that

|det
∂f

∂z
| = |(1 + uTψ(z))det(I)| = |1 + uTψ(z)| (62)

Thus inserting the found expression for the Jacobian
determinant into Equation 59, the resulting distribution after
a planar flow will verify

log(qK(zK)) = log(q0(z0))−
K∑
k=1

log(|1 + uTk ψk(zk−1)|)

(63)
In practice, the function h(x) = tanh(x) will be used, and

it is important to note that not all sets of parameters make
f invertible. A sufficient condition for the invertibility of f
is wTu ≥ −1 [26]. This is enforced by considering, instead
of u for each mapping the modified parameter

û = u+ (m(wTu)−wTu)
w

||w||2
(64)

Where m is the function m(x) = −1 + log(1 + ex).
Unfortunately, even though invertibility of the mapping is
assured, it is impossible to derive an expression for the
inverse in the general case.

Fig. 10: Evaluation of | ∂f
∂z
|−1 for an expansion away from the line

x = 1 (Left) and a contraction towards the line y = 1 (Right)

The name of planar flows is derived from its effect on
probability distributions. Figure 10 displays the evolution of
|∂f∂z |

−1 based on the value of z for two different sets of
parameters that respectively produce the two possible effects
of a planar flow on the probability space. Depending on the
value of w, u and b, the flow will either induce an expansion
(left) or a contraction (right) of the initial density along the
hyperplane wTz+ b = 0. Indeed, the extrema of |∂f∂z |

−1 are
defined by the extrema of ψ(z), which in turn is defined by
the extrema of h′(wTz + b), 0, for h(x) = tanh(x). Please
note that for the generation of this Figure, the parameters
were chosen such that the flow is invertible but the modified
version of u described in Equation 64 was not employed.

Fig. 11: Visualisation of a standard unit Gaussian distribution. On
the left is displayed the two dimensional probability function and
on the right the associated contour plot

These two effects can furthermore be observed more
concretely with Figure 11, Figure 12 and Figure 13. They
demonstrate how an original standard Gaussian distribution
can first be contracted along the line y = 1 and then
expanded away from the hyperplane x = 1

B. Radial Flows

The second type of mapping considered in this study is
expressed as

f(z) = z + βh(α, r)(z − zr) (65)

Where r = ||z − zr||2, h(α, r) = 1
α+r and where zr ∈

IRD, α ∈ IR+ and β ∈ IR are the parameters of the mapping.
The subscript in zr indicates that it should be considered



Fig. 12: Visualisation of the probability distribution resulting of the
application of a planar flow inducing a contraction towards the line
y = 1 on a standard unit Gaussian

Fig. 13: Visualisation of the probability distribution resulting of
the application of a planar flow inducing a contraction towards the
line y = 1 and several expansion away from the line x = 1 on a
standard unit Gaussian

as a reference point. Again, this family of transformation
respect the linear time requirement for the computation of
the Jacobian determinant. Let’s detail why. First

|det
∂f

∂z
| = |det(

∂z

∂z
+ β

∂h(α, r)

∂z
(z − zr)T + βh(α, r)

∂z

∂z
)|

= |det((1 + βh(α, r))I + β
∂h(α, r)

∂z
(z − zr)T )|

(66)
Then, because according to [16]

∂r

∂z
=
∂||z − zr||2

∂z
=

z − zr
||z − zr||2

(67)

The chain rule can be applied as follows

∂h(α, r)

∂z
= h′(α, r)

z − zr
||z − zr||2

(68)

The matrix z−zr
||z−zr||2 (z − zr)T has rank 1, and can thus

be diagonalised into

z − zr
||z − zr||2

(z − zr)T = P


r 0 . . . 0
0 0 . . . 0
...

...
. . .

...
0 0 . . . 0

P−1 (69)

Finally, because det(PAP−1) = det(A), the determinant
of the radial flow mapping can be expressed as

|det
∂f

∂z
| = (1 + βh(α, r))D−1(1 + βh(α, r) + βh′(α, r)r)

(70)

Which can be used to express the resulting probability
distribution after the flows

log(qK(zk)) = log(q0(z0))−
K∑
k=1

[(D − 1) log(1 + βh(α, r))

+ log(1 + βh(α, r) + βh′(α, r)r)]
(71)

Here again, the choice of the parameters will determine
whether the mapping is invertible or not. z can be
decomposed as follows z = zr+rẑ, and allows to re-arrange
f as follows

f(z) = zr + (1 +
β

α+ r
)rẑ (72)

Denoting z′ = f(z) results in

ẑ =
z′ − zr

r(1 + β
α+r )

(73)

By definition, ||ẑ||2 = 1, and thus

||z′ − zr||2 = r(1 +
β

α+ r
) (74)

For this to be invertible, it is sufficient for r(1+ β
α+r ) to be

a non-decreasing function [26]. Looking at its derivative with
regard to r, it follows that β ≥ − (α+r)2

α , or more simply that
β ≥ −α must hold. This is enforced by using a corrected
version of β,

β̂ = −α+m(β) (75)

Where m(x) = log(1+ex). Furthermore, Equation 74 can
be re-arranged the following second order equation in r

r2 + r(α+ β − ||z′ − zr||2)− α||z′ − zr||2 = 0 (76)

Whose solution r∗ provides an analytical expression for
the inverse mapping, based on Equation 73

f−1(z′) = zr +
z′ − zr

1 + β
α+r∗

(77)

The existence of such solution depends on the value of
the parameters and of z′. By noting k = ||z′ − zr||2 and
∆ = (α+ β − k)2 + 4kα

∆ = 0⇒ r∗ = −(α+β−k)
2

∆ > 0⇒ r∗ =
−(α+β−k)+

√
(α+β−k)2+4kα

2

Else, No real solution

(78)

The non-definition of the solution, and thus, the inverse
function on the entire domain of z′ restricts the practical
usability of the inverse function to perform density estimation
for example.

The name of radial flows is also derived from their effects
on probability distributions. Figure 14 displays again the



Fig. 14: Evaluation of | ∂f
∂z
|−1 for a radial expansion away from the

point [1,1] (Left) and a radial contraction towards the point [1,1]
(Right)

evolution of |∂f∂z |
−1 based on the given value of z for two

sets of parameters that respectively produce the two possible
effects of a radial flow on the probability space. Depending
on the parameter values, the flow will either induce an
expansion (left) or a contraction (right) of the initial density
around the reference point zr. Again, please note that the
correction on the parameter β presented in Equation 75 was
not used to generate the plots of this section, while β and α
were still chosen so that the invertibility condition would be
respected.

The effects of radial flows can be observed further with
Figure 15 and Figure 16. They demonstrate how an original
standard Gaussian distribution can first be contracted towards
the point [0.75, 0.75] and then expanded away from the point
[0.85, 0.85].

Fig. 15: Visualisation of the probability distribution resulting of
the application of a radial flow inducing a contraction towards the
point [0.75, 0.75] on a standard unit Gaussian

Fig. 16: Visualisation of the probability distribution resulting of the
application of a radial flow inducing a contraction towards the point
[0.75, 0.75] and an expansion away from the point [0.85, 0.85] on
a standard unit Gaussian

V. IMPLEMENTATION

It is now be pretty straightforward to implement automatic
variational inference with normalizing flows. As the goal
of the study is to understand the practical usability of the
technique, the tests were conducted on purely theoretical
posterior distributions that present interesting properties. As
such, the observed variables x are either non existing or
so few that the use of mini-batches is not required. The
parameters of the model, φ consist of the parameters of
the base distribution, q0 = N (•|µ,Σ) where Σ is chosen
diagonal, plus the parameters of the K layers in the flow
applied on q0. The knowledge of the theoretical expressions
for the joint probability distribution p(z,x) makes it easy to
compute the associated Monte Carlo integral with respect to
the approximated distribution after the flows qk, and thus the
ELBO function. It was seen that the Monte Carlo integral
generates an unbiased estimate of the true expected value
of log(p(z,x)) with regard to the variational distribution
which has a standard deviation of order 1√

S
where S is

the number of samples used for the approximation. Using
a greater number of samples should therefore lead to a
better evaluation of the true value of the ELBO function, and
therefore to a more stable training, without a great increase
in computational cost9. The heuristic value of S = 500 was
used throughout the study, as it leads to a satisfactory training
stability, as shown on Figure 17

Fig. 17: Influence of the number of samples S used in each training
iteration on the stability of the training. The larger the number of
samples S is, the more stable training is. From top left to bottom,
S = 10, S = 100, S = 500

Using tensorflow, all computations form a single
computational graph which allows for easy computation of
the gradient of the ELBO with respect to φ. During training
the running loss is recorded, which allows to save the best
performing models along the way and to stop before the end
of supposed training time if the performance of the model
stops improving. The Adam [32] optimiser with an initial
learning rate of 1× 10−2 was employed during training and

9The difference in training time between S = 10, S = 100 and S = 500
was not found to be significant. Obviously, S cannot be chosen arbitrarily
large as it would cause memory issues



the parameters of the model were initialised with a centered
Gaussian initialiser with standard deviation 1× 10−2.

Algorithm 1 Variational Inference with Normalizing Flows

Parameters: φ for the variational approximation
while Training is not finished do
z0 ∼ q0(•)
zK ← fK ◦ . . . ◦ f1(z0)
∆φ ∝ −∇φELBO(qφ)(zK)

end while

Because the inference network was stripped away, the
complexity of sampling z0 at each training step and
computing the log Jacobian determinant scales with O(KD)
where K is the number of layers in the flow and D the
dimension of the latent variables.

VI. RESULTS

As hinted by the previous section, the implementation
used throughout the study (See Algorithm 1) is geared
towards sampling from the variational approximation. As
such, density estimation is not possible in the general case.
Indeed, the expression of the distribution shaped by a
normalizing flow is expressed as

qK(zK) = q0((fK ◦ . . . ◦ f1)−1(zK))

K∏
k=1

|det
∂fk
∂zk−1

|−1

zk−1 = (fK ◦ . . . ◦ fk)−1(zK)
(79)

And thus, if no expression for the respective inverse flow
is known (as for the Planar Flows), it is not possible for
any given variable zK to derive the associated probability.
The implementation nevertheless allows an easy access to
z0, zK and the accumulated log Jacobian determinant. It
means that it is straightforward to investigate the quality of
the variational approximation by displaying the generated
samples and their associated probability. To improve the
clarity of the representations of samples, they are aggregated
into either histograms (for 1D) or hexbins10 (for higher
dimensions).

Furthermore, to increase the comparability of the resulting
approximation with regard to the true posterior, an
approximated probability density was computed based on
the samples. This approximation relies on Kernel Density
Estimation (KDE) [33], using a Gaussian kernel and Scott’s
rule for bandwidth selection [34].

A. Demonstrative Distributions

Multimodal 1D Gaussian: Let’s consider a model with a
single parameter, that will be considered as a latent variable

x = z2 + ε (80)

10Hexbins, in 2D, split the plane in hexagons. In each hexagon is counted
the number of samples that it covers and the color of each hexagon depends
on the number of samples covered.

Where ε ∼ N (0, σ2). Naturally, x|z ∼ N (z2, σ2).
Considering a univariate standard Gaussian prior for the
latent variable z ∼ N (0, 1), by Bayes theorem, the true
posterior can be expressed as

p(z|x) ∝ p(x|z)p(z) = N (x|z2, σ2)N (z|0, 1) (81)

This simple true posterior distribution has an interesting
property; it is multimodal. For a given x and σ, the posterior
probability density function admits a maximum reached in
two different points, {

z =
√
x

z = −
√
x

(82)

And it thus cannot be approximated accurately by a
Gaussian distribution. Nevertheless, Figure 18 reveals that
the planar flow allows the modification of the original
Gaussian distribution (left) into a distribution that fits very
closely the joint probability p(z, x) (right). In light blue
are displayed the samples z0 and zK obtained from the
distribution. The dark blue curve represents the actual
probability density q0(z0) and qK(zK) while the light
blue curve displays the density function generated through
kernel density estimation. The influence of the flow on the
original Gaussian distribution is pretty clear, by expanding
the probability space away from hyperplane x = 0, it
is able to transform the original mode of the distribution
into two new modes, symmetric with regard to x = 0.
The difference in scale between the true posterior and the
generated approximation is the consequence of the neglected
evidence.

Fig. 18: Variational approximation against the true joint probability
for the observed variable x = 0.5 and parameter σ = 0.1. On the
left is displayed the initial Gaussian distribution q0 before the planar
flow and on the right qK after the flow (K = 3)

Gaussian Mixtures: Going back to the Gaussian mixture
presented in Section II, it can now be expected that
normalizing flows can modify sufficiently the probability
space on which is defined the original Gaussian distribution
so that the resulting probability distribution matches closely
the mixture represented by its contour in Figure 19.

Figure 20 reveals that indeed the trained approximated
distribution produces samples that correspond very closely to
samples expected from the Gaussian mixture. Both gaussians
appear very clearly, have matching shapes and the bottom
one also features a higher mode that the top one. The
approximated probability density function generated from the



Fig. 19: True posterior distribution for the Gaussian mixture model
presented in Section II

.

samples with kernel density estimation also matches fairly
closely the exact true posterior distribution.

Fig. 20: Approximated probability density function estimated with
kernel density estimation (Left) from the samples (Right) generated
from the trained variational distribution on the Gaussian mixture.
Parameters, K = 16, epochs = 5000

Fig. 21: Samples zK (x and y axis) and their respective probabilities
qK(zK) (z axis), generated from the trained variational distribution
on the Gaussian mixture. Parameters, K = 16, epochs = 5000

Let’s also consider another Gaussian mixture model,
considerably simpler, to test whether the flexible family
of variational approximations resulting from the application
of normalizing flows include symmetric distributions. Let’s
define the likelihood probability as purely determined by the
latent variables and the mixture parameters

p(x|z) = π1N (z|µ1,Σ) + π2N (z|µ2,Σ) (83)

If, for simplicity’s sake, the latent variables are assumed
to follow an improper uniform prior z ∼ U , the posterior
distribution becomes immediately

p(z|x) ∝ p(x|z) = π1N (z|µ1,Σ) + π2N (z|µ2,Σ) (84)

Fig. 22: True posterior distribution for the Gaussian mixture with
improper prior. Parameters µ1 = [1, 1], µ2 = [−1,−1], Σ =[
0.45 0
0 0.45

]

Which, for π1 = π2 = 0.5 and µ1 and µ2 being symmetric
with regard to the origin of the plane, generates the desired
symmetric properties exhibited in Figure 22

Figure 23 and Figure 24 reveal that the planar flows
generate a variational family broad and flexible enough
to account for the symmetric and multimodal properties
inherent to this Gaussian mixture model. The samples,
and their respective probabilities, reveal that the learned
distribution qK indeed matches very closely the original
Gaussian mixture.

Figure 25 furthermore provides an interesting visualisation
of how the flow is able to transform samples originating
from a Gaussian distribution into samples that seem to be
generated from the true posterior distribution. The samples
seem to be originally split horizontally, along the red/blue
and green/yellow demarcation, and then rotated diagonally
and finally reshaped so that each subgroup is contained in a
circular shape.

Fig. 23: Approximated probability density function estimated with
kernel density estimation (Left) from the samples (Right) generated
from the trained variational distribution on the symmetric Gaussian
mixture with improper prior. Parameters, K = 16, epochs = 5000



Fig. 24: Samples zK (x and y axis) and their respective
probabilities qK(zK) (z axis), generated from the trained variational
distribution on the symmetric Gaussian mixture with improper prior.
Parameters, K = 16, epochs = 5000

Fig. 25: Visualisation of the effect of the planar flow on the samples
generated by the trained variational approximation. On the left are
displayed samples from the original Gaussian z0 and on the right
their image through the successive mappings that constitute the flow
zK

The Banana Distribution: Next, let’s introduce a posterior
distribution that displays simple hierarchical properties. It is
commonly referred to as the Banana Distribution and its
posterior, which actually does not necessitate any observed
variable can be expressed as

p(z|x) = p(z) = N (z2|0, 4)N (z1|
z22
4
, 1) (85)

The hierarchical property arises from the dependence of
the first dimension of any latent variable, on the second
dimension N (z1| z

2
2

4 , 1). Indeed if each dimension of the
latent variable is instead considered as a distinct variable,
then z1 would depend on z2. The shape of the true posterior
is displayed in Figure 26.

Planar flows don’t take into considerations dependencies

Fig. 26: Contour of the true posterior distribution for the banana
model

between latent variables, unlike other types of normalising
flows that will be detailed in the concluding discussion,
and the shape of the true posterior distribution is not
very complex. Their application should therefore result in
a close match between the variation approximation and
the true distribution. Figure 27 and Figure 28 shows that
indeed, the trained distribution generates samples that match
the general shape of the true posterior distribution. The
arms of the distribution nevertheless clearly extend beyond
what is expected based on the true posterior distribution.
Nevertheless, even using MCMC sampling, with the very
accurate No-U-Turn Sampler (NUTS), and a high number of
tuning samples (3000) [35] produces a similar distribution
of samples from the banana distribution, as shown in
Figure 29. This indicates that the learned approximation
through variational inference with normalizing flows does
not underperform.

Fig. 27: Approximated probability density function estimated with
kernel density estimation (Left) from the samples (Right) generated
from the trained variational distribution on the banana model.
Parameters, K = 16, epochs = 5000

Fig. 28: Samples zK (x and y axis) and their respective probabilities
qK(zK) (z axis), generated from the trained variational distribution
on the banana model. Parameters, K = 16, epochs = 5000

Fig. 29: Samples drawn using MCMC sampling for the banana
model



Fig. 30: Contour of the true posterior distribution for the circle case

Arbitrary Distributions: Finally, it is relevant to also
include arbitrary distributions11, that do not emanate from
a probabilistic model, but that instead display interesting
properties to test the shaping ability of the normalizing flows.

First, let’s define the circle distribution as follows

p(z) =
e

1
2 (
||z||2−4

0.4 )2

e−0.2(
z1−2
0.8 )2 + e−0.2(

z1+2
0.8 )2

(86)

A contour of this distribution is displayed in Figure 30.
Figure 31 and Figure 32 show that again the use of planar
flows result in a satisfactory approximation. The general
shape of the circle is clearly respected, the modes of the
inferred distribution match closely the target modes and most
importantly, the absence of samples in the middle of the
circle is remarkable.

Figure 33 gives a hint to understand how the flow affected
the samples and enabled such fitting. The fact that it is hard to
understand exactly how the samples were transformed from
the left of the figure to the right underlines the transformative
power of normalizing flows.

Finally, to show that the implementation used throughout
the study matches the performance displayed in the paper
originally introducing the technique, [26], the same energy
functions that were used for demonstration will also be
experimented with. Figure 34 present the density functions

11They may not even be probability distributions, but they serve for
demonstration purposes

Fig. 31: Approximated probability density function estimated
with kernel density estimation (Left) from the samples (Right)
generated from the trained variational distribution for the circle
case. Parameters, K = 32, epochs = 10000

Fig. 32: Samples zK (x and y axis) and their respective probabilities
qK(zK) (z axis), generated from the trained variational distribution
for the circle case. Parameters, K = 32, epochs = 10000

Fig. 33: Visualisation of the effect of the planar flow on the samples
generated by the trained variational approximation. On the left are
displayed samples from the original Gaussian z0 and on the right
their image through the successive mappings that constitute the flow
zK

of the four different energies considered. They all present
interesting properties. The first is completely symmetric, with
a large gap between the two regions of high density, which
can potentially induce the approximation to get stuck on
a local minimum. The second present some clear periodic
variations. The third also present some periodic variations,
with a divergence, and finally, the fourth one also present
periodic variations with an even greater divergence. The
associated density functions are
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Where the helping function w1, w2 and w3 are defined as

w1(z) = sin(
2πz1

4
)

w2(z) = 3e−
1
2 (

z1−1
0.6 )2

w3(z) = 3σ(
z1− 1

0.3
)

σ(x) =
1

1 + e−x

(88)



Fig. 34: True density for the demonstrative energy functions. The
brighter, the higher the value for any density function

Figure 35 displays the samples generated by the trained
variational approximation for the four different energy
functions. The samples generally match closely the expected
densities and lead to the conclusion that the implementation
of the planar flows used throughout the study is indeed
performing as expected. It is important nevertheless to
point out that obtaining a satisfying approximation was
here not as straightforward as for the examples seen
previously. For the first energy function, and as expected
the approximation does sometimes perform poorly as
the training process leads to a local minimum, which
results in the fitting of only one of the regions of high
density. No mechanism was found that would guarantee
the convergence towards the complete true posterior. For
the fourth energy function, the exponentials involved would
sometimes overflow. To increase the numerical stability
of the method, the log-sum-exp trick was used. For any
given positive a, the following holds (for demonstration see
Appendix E VIII)

log

(
n∑
i=1

exi

)
= a+ log

(
n∑
i=1

exi−a

)
(89)

A practical value for a is to take a = maxi xi, as it forces
the greatest value in the argument of the exponentials to be
0. In the case of the fourth energy function, this dramatically
improved the stability of the training and allowed the
obtention of a satisfactory approximation of the density
function.

B. The Eight School Model

Finally, let’s evaluate more precisely the simple
normalizing flows introduced by Danilo Rezende and
Shakir Mohamed in [26] on a slightly more complex
problem, whose structure is notoriously hard for variational
inference methods to capture. The Eight-School Model was
introduced by A. Gelman et al in [36] Section 5.5; in eight
different schools was tested a coaching program designed

Fig. 35: Samples generated from the trained variational
approximations with planar flows for the four demonstrative energy
functions. Parameters K = 32, epochs = 15000

to prepare students for a SAT test12, the outcome being the
performance of the students on the actual test. For each
school was recorded the average effect of program on the
test results and its standard error, through an analysis of
covariance adjustment. The results are presented in Table I.

School Estimated program effect
yi

Standard deviation of
program effect σi

1 28 15
2 8 10
3 -3 16
4 7 11
5 -1 9
6 1 11
7 18 10
8 12 18

TABLE I: Observed program effect for the preparation to the SAT
test in the eight different schools

This model is known to be the simplest hierarchical normal
model [37]. The observed results of the coaching programs
can understandably be assumed to be independent. The
model postulates that the mean observed effect in the school
i, yi is sampled form a normal distribution centered around
the true latent mean effect θi, with the observed standard
deviation.

yi|θi ∼ N (θi, σ
2
i ) (90)

It is further considered, because the same program was
tested in all schools, that the latent mean effects of the
program are sampled from a shared normal distribution with
parameters µ and τ

θi|µ, τ ∼ N (µ, τ2) (91)

With the parameters being given the priors

12The SAT (Scholastic Aptitude Test) is a test used for college admissions
in the United States of America.



Fig. 36: Probabilistic graphical model for the eight-school model

µ ∼ N (0, 5)

τ ∼ Half-Cauchy(0, 5)
(92)

Figure 36 represents the overall eight-school model as
a probabilistic graphical model for which the hierarchical
relationship between the observed variables and the latent
variables is very clear.

The graphical model is useful to determine the joint
probability distribution. Noting y = {y1, . . . , y8}, σ =
{σ1, . . . , σ8} and θ = {θ1, . . . , θ8}, it holds that

p(y,θ,σ, µ, τ) = p(y|θ,σ)p(θ|µ, τ)p(µ)p(τ)

= N (y|θ,σ)N (θ|µ, τ)

N (µ|0, 5)Half-Cauchy(τ |0, 5)

(93)

Considering that the random variables associated to a
given school are independent from those associated to any
other school, it follows that for this model the true posterior
distribution is

p(θ, µ, τ |y,σ) ∝ p(y,θ,σ, µ, τ)

=

8∏
i=1

N (yi|θi, σi)
8∏
i=1

N (θi|µ, τ)

N (µ|0, 5)Half-Cauchy(τ |0, 5)

(94)

The attentive reader would have noticed that using
the automatic variational inference technique directly can
potentially result in negative values for τ , the standard
deviation of the distribution over the true latent mean
effect! Indeed, using the approach presented earlier and
used without more precautions until here will approximate
the distribution over the random variable τ as a Gaussian
distribution, which can generate negative values. As
presented in [20], it is nevertheless possible to force an
invertible transformation on the latent variable τ so that its
support become the real space. For τ , the original support of
the random variable is IR∗+ and thus, the logarithm function

is the natural choice here, as supp(log(τ)) = IR. This implies
that the resulting probability density function must account
for this change. By the chain rule, for any other random
variable x it then holds that

p(x, log(τ)) = p(x, τ)|det(Jlog−1(log(τ))|
= p(x, τ)|det(Jexp(log(τ)))|
= p(x, τ)τ

(95)

and thus the probability that will be used in the ELBO for
training the approximation should be re-expressed as

p(y,θ,σ, µ, log(τ)) =

8∏
i=1

N (yi|θi, σi)
8∏
i=1

N (θi|µ, τ)

N (µ|0, 5)Half-Cauchy(τ |0, 5)τ
(96)

Consequently, log(τ) can safely be approximated by a
Gaussian without the possibility of resulting in negative
standard deviation. The use of such transformation to handle
random variables with constrained domains, accordingly
to the title of [20], will be referred to as Automatic
Differentiation Variation Inference or in short, ADVI.

Fig. 37: Contour plot for the true joint probability

p(log(τ), θ1|µ) = N (y1|θ1, σ1)N (θ1|µ, τ)N (µ|0, 5)H-C(τ |0, 5)τ

for µ = 0 on the left and µ = 5 on the right

The k̂ Diagnostic: To assess more qualitatively how
well the trained variational posterior approximates the true
posterior distribution, the k̂ diagnostic will be used for
the eight-school model. First introduced by A. Vehtari
et al in [38], the k̂ diagnostic evaluates the convergence
of importance sampling ratios, which indicates a good
approximation.

Importance sampling is closely related to the Monte Carlo
integration method. In the general case, if it was possible
to draw samples from the true posterior p(z|x) then it
would be possible through the Monte Carlo integration to
the expectation of any integrable function h of the latent
variable with regard to the posterior

E
p
[h(z)] ' 1

S

S∑
s=1

h(zs) , zs ∼ p(•|x) (97)

If sampling from p is not possible, then it is possible
to use a proposal distribution q (such as the variational
approximation for example) to compute the importance
sampling estimate instead
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q(z)
q(z)dz

' 1∑S
s=1 rs
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h(zs)rs , zs ∼ q(•)

(98)

Where the importance sampling ratios rs are defined as
rs = p(zs|x)

q(zs)
. The problem with importance sampling using

such ratios is that the estimate may have infinite variance,
if for example the ratios have a heavy right tail, which
indicates a poor approximation of the true posterior by the
variational approximation [38]. This problem can actually
be quite common for the variational approximation as it was
seen that the minimisation of the KL divergence induces a
zero-avoiding behaviour in the approximation, meaning that
in many cases the approximation will have a lighter tail than
the true posterior, and therefore that the resulting importance
sampling ratios will have a heavy tail.

A. Vehtari et al in [38] detail a remedy to this problem, the
Pareto smoothed importance sampling (PSIS). A generalised
Pareto distribution has three parameters, its shape k and
its location and scale (µ, τ ). With PSIS, a generalized
Pareto distribution is fitted on the M = min(S5 , 3

√
3)

largest importance ratios. The estimated shape parameter
is determined as k̂ and the M largest ratios are replaced
with their expected value under the Pareto distribution.
The resulting estimate is much more stable than standard
importance sampling, and furthermore, the estimated shape
parameter k̂ provides a diagnostic to verify that the
determined variational approximation q(z) is close to the
true posterior distribution p(z|x).

Indeed, as detailed in [37], any positive value k̂ can be
viewed as an estimate to

k = inf
{
k′ > 0 : D 1

k′
(p||q) <∞

}
where Dα(p||q) =

1

α− 1
log

∫
p(z)αq(z)1−αdz

(99)

Where Dα is a Rényi divergence of order α between
p(z|x) and q(z). Notably, when k > 1, D1 = KL becomes
infinite, indicating a very poor variational approximation. A.
Vehtari et al [38] conducted an empirical study to determine
thresholds for the value of k̂, which indicates the following
• if k̂ < 0.5 , PSIS has a fast convergence rate, suggesting

that the variational approximation q is close to the true
posterior probability density.

• If 0.5 < k̂ < 0.7, there is still convergence and
acceptable Monte Carlo error for PSIS. It indicates that
even if the fitting of the approximation is not perfect, it
can still have practical use.

• If k̂ > 0.7, then the PSIS convergence is too slow.
This means that the variational approximation should

be re-considered as a correct approximation of the true
posterior.

In practice, the implementation provided on GitHub of
PSIS by A. Vehtari13 himself was used to compute the
estimated k̂ for any trained approximation.

MCMC Sampling: For the eight-school model, it is not
possible anymore to compare samples, and their associated
KDE estimates, generated from the approximated distribution
to the true posterior distribution. As a fallback, MCMC
samples, generated with the NUTS sampler [35] and
PyMC314 can provide a reasonable basis for comparison.
The generation of the MCMC samples reveals one of the
first specificity of the model, the strong dependence between
the standard deviation τ and the latent mean effect in
school i θi, the latter behind conditioned by the former.
This results in a joint distribution that presents a very
distinguishable neck, as can be seen in Figure 38. For
low standard deviations, the variance of the associated
samples for θi should decrease accordingly. The presence
of this neck makes it difficult to generate samples that truly
represent the joint distribution. For this reason, relying on the
standard expression of the model results in a poor exploration
of the distribution15. Instead, a non-centered variation of
the model was employed for MCMC sampling. For the
latent mean effect of the coaching program, the following
reparametrisation was employed

θi = µ+ τ θ̃i

θ̃i ∼ N (0, 1)

µ ∼ N (0, 5)

τ ∼ Half-Cauchy(0, 5)

(100)

Which encourages the exploration of the distribution as the
latent mean effects θi need not be fitted directly anymore,
but instead a standard Gaussian is fitted and the θi can
be recovered with a scaling and a translation. The samples
obtained are displayed in Figure 38, Figure 39 and Figure
40.

On Figure 38 and Figure 39 is also displayed for each
school the observed mean effect with a black horizontal line.
The influence of the observed yi over the sampled latent
mean effect θi is noticeable; if the observed effect is far
away from 0, the resulting samples will be skewed towards
the observed effect, as can be seen for θ1 (positively skewed)
or for θ3 (negatively skewed).

Finally, Figure 40, which compares the samples -and the

13https://github.com/avehtari/PSIS
14https://docs.pymc.io/
15For more details see https://docs.pymc.io/notebooks/

Diagnosing_biased_Inference_with_Divergences.html?
highlight=eight_school

https://github.com/avehtari/PSIS
https://docs.pymc.io/
https://docs.pymc.io/notebooks/Diagnosing_biased_Inference_with_Divergences.html?highlight=eight_school
https://docs.pymc.io/notebooks/Diagnosing_biased_Inference_with_Divergences.html?highlight=eight_school
https://docs.pymc.io/notebooks/Diagnosing_biased_Inference_with_Divergences.html?highlight=eight_school


Fig. 38: MCMC samples for the Eight-School model showing
log(τ) against θi for various schools. Parameters N = 5000, 2
chains and 1000 tuning iterations

Fig. 39: MCMC samples for the Eight-School model showing µ
against θi for various schools. Parameters N = 5000, 2 chains and
1000 tuning iterations

associated approximate distribution estimated with KDE-
(blue) and the true prior distributions for the parameters
µ and τ , reveals that even the MCMC samples cannot
fit the expected distributions perfectly. The distribution of
the sampled µ, even though it follows a Gaussian shape,
clearly displays a shift towards the positive values, as its
mode is located around 5 and not 0 as expected. A possible
explanation for this is that the average observed value is
ȳ = 8.75, and that it thus forces the approximation towards
positive values for the latent means and thus for the true
overall of the latent means, µ.

To evaluate the approximation generated using Variational
Inference methods, the following procedure was followed.
For a given model and parameters, training was repeated
5 times. After each respective training, a diagnostic was
established, that sampled 50 different sets of 5000 samples
to evaluate the k̂ diagnostic and the ELBO function. The
average k̂ and ELBO was then computed amongst the set

Fig. 40: MCMC samples for the Eight-School model for µ
and τ against the true respective prior distributions N (0, 5) and
Half-Cauchy(0,5). Parameters N = 5000, 2 chains and 1000 tuning
iterations

of samples and reported for that training run. The average
k̂ and ELBO, and their respective standard deviation, was
then determined for the 5 training runs, and will serve for
comparison. Finally, a visualisation of the samples obtained
from the trained approximate distribution that lead to the best
diagnostic, focusing on θ1, was also generated.

A baseline for comparison was first established by
using ADVI without any normalizing flow. The resulting
diagnostic, or fitting metrics, k̂ and ELBO(qk), are exposed
in Table II, and the associated samples displayed in Figure
41 and Figure 42.

Centered ? Mean k̂ Std k̂ Mean ELBO Std ELBO

Yes 0.78 0.049 -60.71 0.027
No 0.11 0.036 -60.20 0.022

TABLE II: Fitting Metrics for the ADVI approximation on the
eight-school model. Parameters epochs = 15000

The non-centered model clearly outperforms, as expected
from the MCMC sampling attempts, its centered counterpart.
This is understandable as in the non-centered case, the
variational approximation needs only to fit a standard
Gaussian that is then translated and scaled rather than a
Gaussian whose parameters also need to be inferred. The
top part of Figure 41 shows that for the centered model
the learned approximation restricted to (log(τ), θ1) is indeed
a Gaussian with θ1 as privileged direction, which can
therefore not learn the dependence relationship linking the
two variables. In the non-centered case, it can be seen that the
scaling operation allows to capture a part of the dependency
between τ and θ1, as for larger τ , the scaling clearly has a
greater effect on the samples. Nevertheless, in both cases, the
skewness is not captured at all, as revealed by the comparison
between the distributions of samples of µ and θ1 generated
from the ADVI (purple) and MCMC approximation (blue).
Overall, the non-centered ADVI approximation provides a
good baseline, with a very acceptable k̂ diagnostic, which
suggest a good convergence of importance sampling ratios,



while the centered ADVI approximation is not satisfactory
by any means.

The addition of normalizing flows (with planar flows)
leads to a closer fit for the variational approximation. The
resulting fitting metrics are exposed in Table III, and the
samples are displayed in Figure 43 and Figure 44.

Centered ? Mean k̂ Std k̂ Mean ELBO Std ELBO

Yes 0.65 0.050 -60.05 0.012
No 0.23 0.039 -59.50 0.006

TABLE III: Fitting Metrics for the ADVI+NF approximation on
the eight-school model. Parameters K = 64, epochs = 15000

The effect of the flows is not as spectacular as what
was observed for the demonstrative examples. It seems that
the hierarchical properties and the increase in the number
of dimensions makes it more difficult to warp the latent
space so that the resulting distribution matches closely the
true posterior distribution. This can be understood pretty
intuitively, the higher the dimension of the latent space (10
dimensions here, θ1, . . . , θ8, µ and τ ), the more complex
becomes the problem of finding hyperplanes that modify the
latent space in an adequate way. The increase in performance
compared to standard ADVI is nevertheless significant (the
new ELBO values being outside of the 95% confidence
interval around the ELBO values for both the centered and
non-centered ADVI models), and for the conclusion of the
k̂ diagnostic even changes -as k̂ < 0.7- for the centered
model. The distribution of samples generated from the
variational approximation also seem to be a closer fit of the
MCMC samples. In the centered case, a small improvement
is noticeable in capturing the dependency between τ and
θ1, and for the non-centered case, the skewness is more
accurately captured, with a distribution of θ1 that is not
centered anymore.

To investigate whether the fitting ability of the flows is
impacted by the dimensionality of the problem, a restricted
eight-school model was considered, for which only the first
school is taken into account. The latent variables are thus
reduced to only θ1, τ and µ. The resulting diagnostic are
exposed in Table IV and the generated samples displayed in
Figure 45 for the centered model and in Figure 46 for the
non-centered model.

Centered ? Mean k̂ Std k̂ Mean ELBO Std ELBO

Yes 0.46 0.048 -5.24 0.005
No 0.28 0.042 -5.13 0.003

TABLE IV: Fitting Metrics for the ADVI+NF approximation on
the eight-school model, reduced to the first school only. Parameters
K = 64, epochs = 15000

The improvement in the fitting is striking. For k̂
diagnostics drop below 0.5, which suggests that the
variational approximation is close to the true posterior

probability density, and the samples displayed match very
closely the MCMC samples, so much actually, that the
MCMC samples are almost not visible anymore in the
case of the non-centered model. The skewness is captured,
and contrary to the MCMC samples, the approximated
distribution of µ stays centered (please note that the
comparison is not entirely fair as the MCMC procedure was
trying to approximate the true posterior for all 8 schools at
once). The color map that indicates the probability qk(zk) of
each sample drawn from the variational approximation can be
compared with Figure 37. The centered model, even though
its fitting metrics are worse, and its associated samples are
not as similar as the MCMC samples, seem to approximate
more accurately the density function of the true posterior.



Fig. 41: Comparison of the trained variational approximation using
the ADVI framework against the MCMC approximation. On top
are displayed samples of (log(τ), θ1) from both approximations,
and on bottom are displayed the distributions of θ1, µ and τ against
the estimated true densities computed with KDE on the MCMC
samples. Parameters, epochs=15000

Fig. 42: Comparison of the trained variational approximation
using the ADVI framework for the non-centered model against
the MCMC approximation. On top are displayed samples of
(log(τ), θ1) from both approximations, and on bottom are displayed
the distributions of θ1, µ and τ against the estimated true
densities computed with KDE on the MCMC samples. Parameters,
epochs=15000



Fig. 43: Comparison of the trained variational approximation using
the ADVI framework with Normalizing Flows against the MCMC
approximation. On top are displayed samples of (log(τ), θ1) from
both approximations, and on bottom are displayed the distributions
of θ1, µ and τ against the estimated true densities computed with
KDE on the MCMC samples. Parameters, K = 64, epochs=15000

Fig. 44: Comparison of the trained variational approximation
using the ADVI framework with Normalizing Flows for the
non-centered model against the MCMC approximation. On top are
displayed samples of (log(τ), θ1) from both approximations, and
on bottom are displayed the distributions of θ1, µ and τ against
the estimated true densities computed with KDE on the MCMC
samples. Parameters, K = 64, epochs=15000



Fig. 45: Comparison of the trained variational approximation using
the ADVI framework with Normalizing Flows, reduced to the
first school only against the MCMC approximation. On top are
displayed samples of (log(τ), θ1) from both approximations, and
on bottom are displayed the distributions of θ1, µ and τ against
the estimated true densities computed with KDE on the MCMC
samples. Parameters, K = 64, epochs=15000

Fig. 46: Comparison of the trained variational approximation using
the ADVI framework with Normalizing Flows, reduced to the
first school only, for the non centered model against the MCMC
approximation. On top are displayed samples of (log(τ), θ1) from
both approximations, and on bottom are displayed the distributions
of θ1, µ and τ against the estimated true densities computed with
KDE on the MCMC samples. Parameters, K = 64, epochs=15000



Fig. 47: Evolution of the two fitting metrics for the ADVI+NF approximation on the eight-school model reduced to only the first two
schools. On the left is shown the progression of k̂ as a function of the number of layers in the normalizing flow and on the right, ELBO(qk)
as a function of the number of layers. The error bars corresponds to the recorded averages ± 1.96 standard deviations.

The previous findings suggest there is a relationship
between the complexity of the model and the practical
performance of the normalizing flows, for a given flow
depth. In theory, increasing the depth of the flow expands
the possible transformations that can be applied on the
original distribution. As a result, the resulting variational
family Q broadens to include potentially better performing
approximate distributions. To study the influence of the depth
of the flow, i.e the number of layers of successive invertible
mappings that constitute the flow -called here number
of flows-, various variational approximations learned with
ADVI+NF with a varying number of flows are compared
for the eight-school model reduced to only the first two
schools, in its centered version16. Table V exhibits the
measured evolution of the fitting metrics based on the
number of flows, also displayed in Figure 47. Figure 48
displays the evolution of samples generated from variational
approximations obtained using a varying number of flows.

Number of Flows Mean k̂ Std k̂ Mean ELBO Std ELBO

10 0.54 0.080 -13.32 0.020
20 0.46 0.064 -13.29 0.011
30 0.40 0.056 -13.28 0.008
40 0.38 0.050 -13.28 0.008
60 0.33 0.074 -13.28 0.009
80 0.28 0.083 -13.29 0.023

128 0.33 0.030 -13.28 0.012

TABLE V: Fitting Metrics for the ADVI+NF approximation on the
eight-school model, reduced to the first two schools only

The results suggest that indeed, up to K = 80, the
deepening of the flow results in an improvement of the
variational approximation. The k̂ decreases very clearly,
and drops quite certainly below the threshold k̂ = 0.5 for
K = 40, the ELBO increases as well, although not as clearly.
The great incertitude for the ELBO measured for K = 80
unfortunately prevents drawing any clear conclusions, but the
generated samples for K = 10, K = 20, K = 40 and K =
80 demonstrates quite clearly that the deeper the flow is, the
closer the samples from the variational approximation match
their MCMC counterpart, notably because they explore

16The centered version was chosen as it is the worst performing and can
thus provide a lower bound for the potential beneficiary effect of deepening
the flow.

deeper the neck of the distribution.

It is finally interesting to note that for K = 128, the
improvement of the approximation stops to be so clear.
The k̂ is not significantly lower than for shallower flows,
and the improvement in the ELBO is negligible. This
suggests a practical limitation to the beneficiary effect of
deepening normalizing flows. No mention of this effect is
present in Danilo Rezende and Shakir Mohamed’s paper
[26]. It is likely that this effect is related to the vanishing
gradient problem [39], resulting from the use of the
non-linear hyperbolic tangent function in each flow. It would
therefore be overly optimistic to hope to increase the overall
performance of the variational approximation generated with
normalizing flows on the complete eight-school model by
simply increasing the depth of the flow.

The results for radial flows, being less reliable, and less
interpretable are presented in Appendix F VIII.



Fig. 48: Evolution of the samples generated by the variational approximation based on the number of flows. From top left to bottom
right, K = 10, K = 20, K = 40, K = 80

VII. DISCUSSION

This study detailed how normalizing flows, which
are constituted by a succession of invertible mappings,
can transform probability distributions, Gaussian typically,
into new distributions, with highly complex features.
Normalizing flows, employed together with an automatic
and differentiated approach to variational inference, relying
on Monte Carlo gradient estimation for the optimisation
of the ELBO function, provides an efficient, scalable
and versatile way to approximate arbitrarily complex
posterior distribution of probabilistic models. Demonstrative
posterior distributions, featuring varied non standard
features were used to reveal the remarkable flexibility of
variational approximations obtained with normalizing flows.
Furthermore, the eight-school model was used to first show
that in the case of a significantly more complex model,
with a higher dimensional latent space and hierarchical
dependencies, the normalizing flows indeed provide a
significant improvement in the variational approximation. It
also revealed that the performance of the flows is limited by
the number of layers in the flow. Theoretically, the deeper the
flow is, the richer posterior approximation it should generate,
but it was seen that in practice, deepening the flow only has

a beneficial impact up to a certain depth. It was postulated
that the flows were subject to the vanishing gradient problem,
and a natural extension of this study would be to experiment
with non-linearities that are less sensitive to this issue.

Finally, while this study proves that the use of normalizing
flows indeed improves the performance of variational
inference techniques, it mostly demonstrates that their
implementation is not able to overcome all the objections
to using variational inference as a default approach for
statistical inference. Contrarly to what was postulated by
Danilo Rezende and Shakir Mohamed in [26]

”Normalizing flows allow us to control the
complexity of the posterior at run-time by simply
increasing the flow length of the sequence”

There are clear limitations to the practical use of normalising
flows. It is nevertheless a very promising method, which
if used with better suited mappings, such as in Inverse
Autoregressive Flows [40] or in Masked Autoregressive
Flows [41], can result in practical techniques with state of the
art performance, as was achieved with the Parallel WaveNet
[11] model which is currently used by Google Assistant to
generate realistic speech.



VIII. SOURCE CODE

All code used throughout this study is accessible at
https://github.com/pierresegonne/VINF.
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APPENDIX A: PROBABILISTIC LINEAR REGRESSION

Provided that for the parameter ω, the prediction value for
a data point x is ωTx, it can be postulated that the target
variable follows a normal distribution centered around the
predicted value, for a given standard deviation σ.

y|ω, x ∼ N (ωTx, σ2I) (101)

If furthermore, it is expected that the weights of the model
also follow a Gaussian distribution, centered, and with a
given standard deviation γ

ω ∼ N (0, γ2I) (102)

Then the MAP estimate can be obtained by maximising
the log-probability of the posterior distribution

ω∗ = max
ω

log(p(y|ω, x)p(ω))

= max
ω
− 1

2σ2
(y − ωTx)T (y − ωTx)− 1

2γ
ωTω

= max
ω
||y − ωTx||22 + (

σ

γ
)2||ω||22

(103)

APPENDIX B: DEMONSTRATION OF THE POSITIVENESS
OF THE KULLBACK-LEIBLER DIVERGENCE

For the following demonstration, two probability
distributions p and q over continuous random variables z
will be considered.

First, ∀x > 0, log(x) ≤ x− 1 so it holds that

−
∫ ∞
−∞

p(z) log(
q(z)

p(z)
)dz ≥ −

∫ ∞
−∞

p(z)(
q(z)

p(z)
− 1)dz

≥ −
∫ ∞
−∞

q(z)dz +

∫ ∞
−∞

p(z)dz

≥ 0
(104)

Which thus yields directly that

KL(p||q) ≥ 0 (105)

And also results in Gibbs’ inequality

−
∫ ∞
−∞

p(z) log(q(z))dz ≥ −
∫ ∞
−∞

p(z) log(p(z))dz (106)

APPENDIX C: DERIVATION OF THE M-STEP UPDATE FOR
THE VARIATIONAL GAUSSIAN MIXTURE

Please note that I did not have enough time to derive the
following considerations on my own, and greatly relied on
the exercises of C. Bishop’s book

As a reminder, the parameter factor was expressed as

log(q∗(π,µ,Λ)) = log(p(π)) +

K∑
k=1

log(p(µk,Λk))

+ Ez[log(p(z|π))]

+

N∑
n=1

K∑
k=1

log(N (xn|µk,Λ−1k ))rnk

+ const
(107)

To first obtain q(µk,Λk), only the terms that depend on
µk and Λk can be kept

log(q∗(µk,Λk)) = log(N (µk|m0, (β0Λk)−1))

+ log(W(Λk|W0, ν0))

+

N∑
n=1

log(N (xn|µk,Λ−1k ))rnk

+ const

= −β0
2

(µk −m0)TΛk(µk −m0)

+
1

2
log(|Λk|)−

1

2
tr(Λ−1k W0)

+
ν0 −D − 1

2
log(|Λk|)

− 1

2

N∑
n=1

rnk(xn − µk)TΛk(xn − µk)

+
1

2
Nk log(|Λk|) + const

(108)
Then focusing on µk, as log(q(µk,Λk)) =

log(q(µk|Λk)) + log(q(Λk)), the terms depending on
µk can be isolated to give

log(q∗(µk|Λk)) = −1

2
µTk (β0 +Nk)Λkµk

+ µTkΛk(β0m0 +Nkx̄k) + const
(109)

This is clearly a quadratic form in µk, which indicates
that µk follows a Gaussian distribution

q∗(µk|Λk) = N (µk|mk, (βkΛk)−1) (110)

with

βk = β0 +Nk

mk =
1

βk
(β0m0 +Nkx̄k)

(111)

Using the relation log(q∗(Λk)) = log(q∗(µk,Λk)) −
log(q∗(µk|Λk)), and only keeping terms in Λk results in

log(q∗(Λk)) =
νk −D − 1

2
log(|Λk|)−

1

2
tr(ΛkW

−1
k )

(112)
For



W−1
k = W−1

0 +NkSk +
β0Nk
β0 +Nk

(xk −m0)(xk −m0)T

νk = ν0 +Nk
(113)

Which implies that Λk indeed follows a Wishart
distribution

q∗(Λk) =W(Λk|Wk, νk) (114)

APPENDIX D: DERIVATION OF THE PROBABILITY
DENSITY FUNCTION OF THE VARIATIONAL GAUSSIAN

MIXTURE

Please note that I did not have enough time to derive the
following considerations on my own, and greatly relied on
the exercises of C. Bishop’s book

As a reminder, the predictive density for a new variable
is expressed as

p(x̂|x) =

K∑
k=1

∫ ∫ ∫
πkN (x̂|µk,Λ−1k )

q(π)q(µk,Λk)dπdµkdΛk

(115)

Starting the integration over π and using E[πk] = αk

α̂ ,
gives

p(x̂|x) =

K∑
k=1

αk
α̂

∫ ∫
N (x̂|µk,Λ−1k )

q(µk,Λk)dµkdΛk

(116)

Furthermore, it has been seen that q(µk,Λk) is a
Gaussian-Wishart distribution. This allows to compute the
integral over µk as a Gaussian integral

∫
N (x̂|µk,Λ−1k )N (µk|mk, (βkΛk)−1)dµk =

N (x̂|mk, (1 + β−1k )Λ−1k )

(117)

The final integration is the convolution of a Wishart with
a Gaussian which yields

∫
N (x̂|mk, (1 + β−1k )Λ−1k )W(Λk|Wk, νk)dΛk

∝
∣∣∣∣W−1

k +
1

1 + β−1k
(x̂−mk)(x̂−mk)T

∣∣∣∣−(νk+1)/2

∝
∣∣∣∣I +

1

1 + β−1k
Wk(x̂−mk)(x̂−mk)T

∣∣∣∣−(νk+1)/2

(118)
Which finally becomes, with the matrix determinant

lemma,

∫
N (x̂|mk, (1 + β−1k )Λ−1k )W(Λk|Wk, νk)dΛk

∝
(

1 +
1

1 + β−1k
(x̂−mk)TWk(x̂−mk)

)−(νk+1)/2

(119)
Which can be recognised as a Student distribution with

mean mk, precision Lk = (νk+1−D)βk

1+βk
Wk and νk + 1−D

degrees of freedom.

APPENDIX E: DEMONSTRATION OF THE LOG-SUM-EXP

Given y = log (
∑n
i=1 e

xi), the following holds

y = log

(
n∑
i=1

exi

)

⇔ ey =

n∑
i=1

exi

⇔ ey−a =

n∑
i=1

exi−a

⇔ y − a = log

(
n∑
i=1

exi−a

)
(120)

finally resulting in the log-sum-exp trick

log

(
n∑
i=1

exi

)
= a+ log

(
n∑
i=1

exi−a

)
(121)

APPENDIX F: RESULTS FOR THE RADIAL FLOWS

Overall, training radial flows, for the same cases as the
planar flows revealed to be much more unstable and led in
many trials to numerical instabilities, as hinted by Figure
49. Not surprisingly, the two demonstrative distributions
that were the most closely approximated were the circle
and the banana models. Figure 50 displays the variational
approximation learned with radial flows for the circle
distribution and Figure 51 for the banana distribution. Figure
52 displays the trained approximation on the demonstrative
energy functions. The results are clearly not satisfactory and
show that the training is flawed. Furthermore for the two hills
model, the gaussian mixtures, the 1st energy function and
the eight school model, the training could not be completed
due to numerical overflows. The developed implementation
of the radial flows, even though it shows convergence in
some cases, should be reconsidered and improved. In the
original paper, the radial flows seemed to perform on a
similar level than the planar flows, at least on the first three
energy functions, as shown in Figure 3. (d), which indicates
that some improvements are possible.



Fig. 49: Example of instability displayed in training by the radial
flows, for the same number of samples used for the planar flows
S = 500

Fig. 50: Variational approximation learned for the circle
distribution, with radial flows. Parameters K = 16, epochs = 5000

Fig. 51: Variational approximation learned for the banana
distribution, with radial flows. Parameters K = 16, epochs = 5000

Fig. 52: Variational approximation learned for the 2nd, 3rd and 4th
energy functions, with radial flows. Parameters K = 32, epochs =
10000
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